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Abstract— The performance of multi-robot systems heavily
relies on efficient task allocation and motion coordination.
However, for a group of a large number of robots, finding
the optimal solution is inevitably time-consuming and may
become impossible. Recognizing that tasks vary in their impact
on system performance, our main idea is to identify their
critical subset that significantly influences the entire system,
and enhance task allocation efficiency by optimally planning
critical tasks while distributing the remaining tasks randomly
or with simple strategies. We call this approach Selective Multi-
robot Task Planning (SMTP), which contributes to significantly
reducing the computational requirements and solution time,
and in the meanwhile, maintaining the system performance. In
addition, by implementing a filtering mechanism based on the
conditional expectation to eliminate less essential tasks, SMTP
shows high extendability, maximizes task allocation efficiency,
and balances computational efficiency and solution quality.
Massive simulation and real experiments demonstrate that
our algorithm decreases the computation time and maintains
the properties of the base system. Large-scale experiments
show that our approach only takes 11% computation time to
reach 80% optimization objective and 94.8% traffic balance
performance.

I. INTRODUCTION

Multi-robot systems (MRSs) coordinate a group of robots
to execute complex missions such as surveillance and forag-
ing [1], improving flexibility and fault tolerance compared
with single-robot systems [2]. Task planning, which typically
includes task assignment, information and resource sharing,
path planning, motion coordination, and local management,
is crucial for a MRS [3]. In this paper, we investigate
Multi-Robot Task Planning (MRTP) which studies the task
assignment and path planning for mobile robots, taking robot
capabilities, cooperation performance, task dependencies,
and other requirements into consideration [4].

The MRTP problem, as an instance of the generalized
assignment problem (GAP), is an NP-hard combinatorial
optimization problem [5]. Although a few approaches, ex-
emplified by the Hungarian algorithm for solving classic
assignment problems [6] and the branch-and-bound method
for integer optimization [7], yield optimal solutions, they
cannot obtain solutions within the polynomial time. There-
fore, massive robots and tasks in large-scale environments
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greatly strain the computational resources of the central pro-
cessor [8]. Addressing MRTP problems with numerous tasks
and agents necessitates compromising optimality in favor of
computational feasibility, such as heuristic approaches [9]
and evolutionary algorithms [10].

To alleviate the computational stress and enhance the
efficiency of task planning in MRSs, we propose the Se-
lective Multi-robot Task Planning (SMTP) algorithm, which
diminishes the number of tasks requiring optimal scheduling.
Diverging from existing methods that partition the original
problem into sub-problems of comparable size and formula-
tion (such as planning in batches), our technique for task
pruning identifies a critical subset of tasks. Tasks inside
the critical subset are meticulously planned to minimize the
overall cost function, while the remaining tasks are randomly
planned.

Our contribution can be summarized as follows:

1) We propose the idea of identifying the critical subset
from the entire tasks and concentrating limited resources
only on the critical subset, which contributes to significantly
reducing the computational requirements while maintaining
the system performance. The proposed SMTP algorithm
is well formulated from both mathematical and statistical
perspectives.

2) We provide comprehensive evaluations of the SMTP al-
gorithm, which validates our efficiency and demonstrates our
scalability and generalizability to various scenarios. In large-
scale experiments, we achieve about 80% of the optimization
objective and 94.8% of the traffic balance performance
with only 11% computing time compared with the base
model. Additionally, physical experiments are provided to
demonstrate our practical applicability.

II. RELATED WORKS
A. Multi-Robot Task Planning

In large-scale robot networks, MRTP is typically divided
into task allocation and path planning [4]. In this process,
the system assigns transportation tasks to the most suit-
able robots and formulates trajectories for these robots to
reach their designated task locations [11]. Traditional MRTP
approaches decouple task allocation from path planning,
autonomously isolating and addressing the two stages [12].
However, neglecting robot pathways during task allocation
gives rise to localized area congestion or even robot dead-
locks [13], especially in congested environments such as
logistics warehouses [14]. Optimization over the combined
task and motion planning allows for improved solutions com-
pared with separately optimized algorithms [4]. For instance,



combined task and motion planning [15] can adaptively
manage tasks in a dynamics warehouse. In our previous
work [16], [17], we introduced a task planning approach
based on conflict graphs which effectively mitigates the
issue of local area congestion. Nonetheless, the approach
confronts challenges pertaining to real-time responsiveness
within large-scale robot networks.

B. Scaling Down Problems Releasing Computation Load

Decomposition methods [18], [19] mitigate the peak com-
putational burden of complex assignments by reducing the
problem size considered each time. For instance, the au-
thors in [20] construct a Lagrange relaxation problem and
iteratively solve two easily solvable sub-problems. Dowdy
et al. [21] assign files by tackling two sub-problems: de-
termining optimal probabilities and finding a realization.
Moreover, Randomized Decomposition [22] randomly parti-
tions the decision variables of the nonlinear and non-convex
problem into subsets, where variables in each subset are
then optimized individually while keeping the remaining
variables fixed. These decomposition methods reduce the
complexity and improve computational efficiency by dividing
an intricate problem into smaller sub-problems, which can be
heuristically solved or yield optimal solutions [23].

C. Exhibiting Distinct Attention to Individual Tasks

In contrast to conventional approaches enduing all tasks
indistinguishable values, task pruning mechanisms enhance
task allocation efficiency [24], [25]. Researchers have agreed
on the necessity to perform variable importance analysis [26].
Denninnart et al. [27] propose an algorithm with distinc-
tive attention to individual tasks, bolstering the system’s
robustness. This method deliberately defers or drops tasks
with low probabilities of meeting their respective deadlines,
thereby increasing the likelihood of meeting deadlines for
other tasks. By proactively optimizing the allocation of
available resources, this mechanism prioritizes tasks with
higher chances of timely completion, improving the overall
reliability and effectiveness of the task allocation system.

III. PROBLEM FORMULATION AND SYSTEM STRUCTURE
A. Problem Formulation

Given N, available robots denoted as {r,}, with n €
[N,] = {1,...,N,}, and a bunch of assignments {a;}, where
i € [N¢], we investigate the planning of tasks to different
robots. The task assignment vector

p=(uf,uj,...,uf,)" €{0, 1}

is designed to represent a task allocation plan, where (u;),, =
M (i—1)xN,+n = 1 if the task a; is assigned to robot r,, and
(u;), = 0 otherwise (u € {0,1}""). Denoting the objective
function of the quadratic assignment problem by f(u) =
uTMu, without loss of generality, each element in matrix
M can be assumed to be positive: M C Rf‘NTXN*NT.

The constraints of the assignment problem state that each
task (e.g., a;) should be assigned to one and only one robot
(1Tw; = 1), and each robot 7, can receive at most one

task, i.e., Zfﬁl Min < 1. The objective of the assignment
problem is to find an optimal task assignment vector p* that
minimizes the goal function f (), subject to the constraints
above, i.e.,

min  pTMp
I

N, N,
S.t. Z(Ui)n = Z IJ'(i—l)*Nr+n = 17” € [NT]
n=1 n=1

(D
Ny Ny
Z(uz)n = Zu’(i—l)*NT-&-n < 13VZ € [Nt]
i=1 i=1

p € {0, 1} N,
B. Structure

The proposed approach will be evaluated on conflict-
based allocation for solving pick-and-place problems. A
unidirectional roadmap on a known physical environment is
built [16]. The roadmap is represented as a directed graph
G = (V,€&). Each node v; € V corresponds to a location in
the 2D space, where a node can only be occupied by one
robot at a time. The edge e = (v;,v;) € & represents a
straight path directly connecting nodes v; and v;, and the
direction represents that robot can pass along. The roadmap
is partitioned into sectors.

When a task a; is assigned to a robot r,, the system
performs sector-level trajectory planning with predicted time,
represented as the time extended sector path (TESP):

(I)iﬂl = {(szl,n’ hzl,n)ﬂ (Szl,na hzl,n)a cee }

Here, the jth tuple (sfn,hfn) indicates that the robot r,
travels through the j-th sector in the planned sector-path
(s1,) from the timestep hj,, to h{;l. Then for two task-
robot pairs, their potential conflict can be examined as
the accumulated coincidence time between the two planned
TESPs is represented as |®; ,, & ®;..,,| € R (see in [16]). The

following relationship holds based on the former definitions:
0 S |(Di,n &® (Pj,'ml S min {‘QL,R @ (I)i,n| ) |(Pj,'m 57 (Pj,'ml} (2)
C. Conflict Matrix

The computation of the generalized conflict matrix ¥ &
RN-NexNr Nt s based on the TESPs. W (i .n),(j,m) 1s defined
to quantify the created interactive conflict when task a; is
assigned to robot r,, and task a; is assigned to robot 7y,:

‘I’(i,n),(j,m) = ‘Il(ifl)*Nern,(jfl)*NrJrrn = ‘(I)Z,n ® (I)J,m| 5

indicating the symmetry of the matrix: ¥ = ¥’ Further-
more, the element W(; y (; ) corresponds to the predicted
travel time of the path when task a; is allocated to robot r,.

IV. METHODS

To reduce the computational cost of task allocation, we
partition tasks into critical and trivial subsets. The alloca-
tion system carefully distributes tasks among the critical
subset while randomly allocating the remaining tasks. This
approach involves two main steps: identifying the critical
subset and solving the reduced assignment problem.



A. Regarding a Statistical Process

Denote the index of the critical task subset by Ay C [Ny].
The main challenge lies in ranking tasks appropriately by
predetermining the size of the critical subset as |A;| = k.
This entails finding the index set A;, such that a sequence
{6, }pen, € {0,1}"" can be obtained, satisfying

f(p) — f(u*) < e only if u, =0, Vp € Ay. 3)

Partition the matrix M into N; X N; submatrices of size
N, x N,. The submatrix M?*J summarizes all information
between task a; and task a;. The reduced assignment prob-
lem can be formulated as follows:

M7
i,JEN¢
N,
s.t. (up)n =1,p € Ay
2w @
> (wp)n < 1,Vn € [N,]
PEA,

where u, € {0,1}""

Denote one group of optimal sub-problem solutions as
U,,p € A;. When allocating the remaining task a, (¢ ¢ A;)
is randomized, u, can be regarded as a random variable
following the discrete uniform distribution. Since none of
the tasks can be assigned to robots having been assigned by
tasks in A, the expectation of u, equals

6 e N
m,Where o= 1Nt — Z Up.
pEA:

Elu,] =

Therefore, the problem in Eq. 3 can be statistically formu-
lated as finding i and A; such that

P(f(p) — f(p*) < €|up =1,,Vp € Ay) > K,

where « represents the probability that the resulted objective
function is smaller than f(u*) + €. Alternatively,

E[f(p)|u, =0y, Vp € Ay] < E&(e, 5, 1),

where the right-hand side represents a threshold. We concen-
trate on the formulation of the conditional probability

E[f(ﬂ)‘up =1,,Vp € Ay]

~T g8 : N
_ Z Yp MP95 n Z 5TMq’pup
N, — k N, — k
PENL,qEA: qEA,pEAL
. 5
+ Z E[u;Fqul’qzqu u, = 0,,Vp € Ay )
q1,92 A
+ Z ﬁgl MPP2q,,
P1,P2EA:

For tasks g1, g2 not part of the critical subset, the conditional
expectation of their cost can be expressed as

Elul M %u,,u, = ,,Vp € A]

1 (5TMq1,q25 _ Z

- v
—k eng{ﬁpvpe/\t}

When (M%?)T = MP4, the expression in Eq. 5 can be
further simplified as

AT e
R R aTMPpa§
DL MR, 2y e
p1,p2€A: PEAL,qEA: "
+ Z 5TMq1,qz(§ — tr(MI®) (6)
q1,92¢ A N —k
+ Z ﬁgM‘thQﬁp]
pEA:

This expression resembles iterative methods, where the first
term represents the reduced optimal function Eq. 4.

B. Intuitive Algorithm

When only pruning one task, we can examine the impact
of randomizing a single task on the overall cost. Denote the
task to be randomized as a; and the robot assigned to perform
this task as r,,, then one instance of Eq. 6 is:

. 67 _—
Z T Mm,pzu L+ 22 N kM P,
P1,p2EA: p#i
ST\, 8 7,1 ~T zz
+ o [6TM"8 — tr(M" + > aiM”
N,.—k

PEA,

Inspired by this formulation:

PRUEVETIED B SEAIVITHED 9D SRV
pF£i p#i nFEM pF£i nEM
we designed the following selective algorithm.

Convert the problem of reducing the number of tasks
to a task insertion problem. We consider each task as an
intruder and assess its impact on the “original system”,
including all tasks except the intruder. We aim to determine
the extent to which the cost measure of the original system
will increase upon introducing the new task a;. The function
fi; is employed to quantify the task-level cost between task
a; and task a;. Specifically, f; ;(n,m) = M7, represents
the cost that arises when the intruder task a; is assigned to
robot 7, and affects the event of “robot 7, being assigned
with task a;”. Consequently, the average incremental cost
for task a; when task a; is allocated to robot r,, can be
expressed as the average of the cost:

Ml Pe,,

M&JI
i m)li,n] = Z”ﬁ_lm

Furthermore, the average increased cost of “task a; to robot
ry,” for all other tasks can be expressed as

» M
0 2 B0 = S i)

Two alternatives emerge for task omission. First, we can
exclude the task with the lowest expectation of incremental
cost on the original system, namely h(i) 2 E,[h;(n)].
This task is disregarded due to its minimal impact on the
overall system. Secondly, it is reasonable to eliminate the
task characterized by the minimum cost variation, i.e., h(i) £
vary (hi(n)). Ignore this task because different allocations

gi;j(n) = B,




have a negligible effect on the overall system. The subse-
quent step involves iteratively choosing and removing the
chosen task until the predetermined iteration limit is reached,
or a substantial increase in the value becomes evident.

Algorithm 1 Critical Task Selection

Input: the cost matrix M; the number of robots, tasks and critical
tasks: Ny, Ny and k; the select function c(M, @) e.g., c(M, i) =
Zn Zj;é,:(zm#n M:ﬂ‘]er)
Np(Ny—1)(Ne—1)
Output: Index set Ay;
A+ {1,2,...,N}
2: At < @
3: M+ M
4: for p< 1to k do
5: q = argmin; ¢c(M, 1)
6.
7
8

: At < At U q
: end for
: return A

In the following experiments, we will take the conflict-
based model as an example. Concerning both the system
conflict and individual traveling periods of the robots, a
combination of the system and individual based on conflict
measure will be applied as the applied rank function of task:

M £ VAR[E;(gij(n)) + ¥} ]. (7)
C. Solving Quadratic Assignment Problems (QAPs)

QAPs pose a significant computational challenge, prompt-
ing researchers to explore alternative approaches to obtain
solutions within a reasonable time [28]. In this context, a
fusion of quadratic optimization techniques and a greedy
algorithm is employed on the reduced QAP. Initially, a
quadratic optimization method derives an integer-constraint-
free solution p, capturing the inherent problem structure.
Subsequently, several iterations are performed to legalize
the solution. During each iteration, a ceiling operation is
applied to set the maximum value (u;),, to one, indicating the
assignment of task a; to robot r,. Concurrently, the related
elements u; and u; ,,, Vj are set to zero, excluding the task a;
and robot r, from consideration. This combined approach,
integrating quadratic optimization and the greedy algorithm,
offers a promising solution for efficiently resolving large-
scale QAP instances with a balance between computational
efficiency and solution quality.

V. EXPERIMENTS

The proposed algorithm is evaluated in a conflict-based
MRS for the pick-and-place problem [16]. It effectively
alleviates the strain on the allocation system while preserving
the overall performance, thus striking a balance between
efficiency and resource allocation.

A. Pipeline

The overarching workflow for task allocation involves
multiple steps: rough path plan, critical tasks selection, task
assignment, and accomplishing tasks. First, all sector-paths ®
are generated to determine efficient routes within designated
sectors for all robot-task combinations. The conflict matrix is

computed using these sector-paths to quantify the interaction
conflicts between robot-task assignments. Subsequently, the
conflict matrix can be transformed into a more compre-
hensive cost function, incorporating optional constraints to
capture complexities. A subset of critical tasks is selected
based on the cost function to mitigate the computational
burden. This task reduction technique focuses on comparable
essential tasks to streamline the computational process. The
reduced QAP is then solved, and the tasks are systematically
allocated to appropriate robots based on the obtained solu-
tion. This allocation process guarantees the average perfor-
mance of the allocation. Finally, the remaining unassigned
tasks are randomly distributed among the leftover robots,
completing the task planning process.

TABLE I: Map Setup

Small Middle Large
Map Size 68 x 56 116 x 80 164 x 104
# Pick-up Station 432 1800 4032
# Workstation 216 432 648
# Sector 62 194 398
# Robot 216 360 504
# Task 500 750 1000

#: The Number of

B. Experiments Setup

Assuming that the task posting system randomly generates
transportation tasks at an average rate [29], the task planning
system collects these published tasks into a task pool and
allocates them once the number of tasks in the pool reaches a
predetermined batch size N;. Three distinct simulation maps
with identical structures but different sizes are considered
(Table I). The small map has the size of 68 x 56 and is
partitioned into 62 sectors with 216 workstations. In this
scenario, each robot collects one cargo from a pick-up and
transports it to a workstation. All experiments use 0.01 for
« in Eq. 7 for consistency, and the batch size in Table II and
Table III is set as 5. The simulations use a PYTHON 3.7
simulator on a GTX 3070 GPU with 32GB RAM.

C. Experimental Results

Table II records the simulations conducted by randomly
assigning tasks outside the critical subset, considering the
number of critical tasks ranging from 0 to 5. Experiments are
repeated five times on different task sets to ensure reliability,
recording means and variances. The variance exhibits a
decreasing trend as the number of critical subsets increases,
as Section I'V-B indicates. The traffic density quantifies the
congestion levels, affirming that our algorithm preserves the
base model characteristics well. The execution time measures
the average duration from task posting to completion [30],
while the computation time records the average time needed
for planning a batch of tasks.

To validate the adaptability of our approach, Table III
compares the random strategy and nearest assign strategy
on the large map. In each column block, the left column
shows the random assigning of the remaining tasks, and the
right column indicates the assignment to the nearest robot.



TABLE II: The Influence of the Number of Key Tasks on the Metrics of the Task Allocation System

# Critical Tasks

0

1

2

3

4

5

Computation Time

0.09 (4.45e-6)

0.15 (1.56e-6)

0.21 (8.67e-6)

0.31 (8.89¢-6)

0.46 (4.85¢e-5)

0.66 (6.93e-5)

84.13 (1.48e+0)

78.26 (3.93e-1)

72.0 (7.93e-1)

67.9 (7.66e-1)

5.85 (9.88e-2)

5.45 (4.33e-3)

5.09 (1.23e-2)

4.74 (4.98e-3)

0.62 (2.80e-5)

0.9 (1.29e-4)

1.39 (7.42e-4)

2.34 (9.44e-4)

134.57 (1.17e+0)

123.48 (8.56e-1)

113.79 (1.70e+0)

107.22 (1.45e+0)

4.19 (1.08e-2)

3.9 (6.05e-3)

3.64 (8.52e-3)

3.39 (7.79-3)

1.46 (5.24e-5)

2.12 (3.79e-4)

3.77 (4.38¢-3)

6.73 (3.87¢-2)

S Execution Time 97.99 (2.26e+0) 90.97 (8.38e-1)
Traffic Density 6.2 (4.98e-2) 6.13 (2.86e-2)
Computation Time 0.38 (3.50e-5) 0.47 (7.92e-6)

M Execution Time 158.91 (1.21e+0) 146.13 (7.14e-1)
Traffic Density 4.82 (1.58e-2) 4.55 (1.80e-2)
Computation Time 0.97 (1.89¢-4) 1.16 (9.66e-5)

L Execution Time 216.37 (4.12e+0)  195.94 (2.92e+0)

179.76 (3.14e+0)

163.1 (4.91e+0)

151.11 (2.28e+0)

142.7 (8.51e-1)

Traffic Density

5.71 (1.79¢-2)

5.42 (5.96e-3)

5.11 (7.82e-3)

4.71 (6.39-3)

4.46 (2.74e-3)

4.17 (6.49-3)

TABLE III: The Improvement Compared to Optimal

4 cTt Computation Time

Total Cost Traffic Density

Random ‘ Nearest

Random

Nearest Random Nearest

5 (optimal planning) 6.73 (100%)

164.88 (100%) 4.17 (100%)

189.13 (114.7%)

171.63 (104.1%)

4.46 (107.0%)

4.14 (99.28%)

236.63 (143.5%)

176.38 (107.0%)

4.71 (113.0%)

4.19 (100.5%)

284.63 (172.6%)

174.38 (105.8%)

5.11 (122.5%)

4.20 (100.7%)

4 3.77 (56.02%) | 4.07 (60.48%)
3 2.12 (31.50%) | 2.44 (36.26%)
2 1.46 (21.69%) | 1.82 (27.04%)
1 1.16 (17.24%) | 1.47 (21.84%)

289.00 (175.3%)

201.00 (121.9%)

5.42 (123.0%)

4.21 (101.0%)

* The Number of Critical Tasks

The total costs are the values of the objective function in
Eq. 1. The performance on 5 and 4 critical task scenarios
with random assignment demonstrates SMTP’s effectiveness:
a sacrifice of only 14.7% total cost and 7% traffic density
saves 43.98% computation time. The random assignment
has guaranteed the lower bound of the algorithm’s perfor-
mance while incorporating strategies, e.g., the nearest robot
assignment, can further improve its performance. In the
experiments with the nearest strategy, traffic density, and total
cost remain consistent, while the computation time decreases
considerably, highlighting the adaptability of our algorithm.
All in all, SMTP can highly reduce computation time and
achieve similar performance.

In the large-scale experiment with a task batch size of
20, the algorithm is performed with the nearest strategy
on the small map with more than 200 robots and 500
tasks (Table IV). Comparing the optimal baseline, by only
considering 5 critical tasks, we can obtain that a sacri-
fice of only 5.5% traffic density saves 88.9% computation

TABLE IV: The Improvement Compared to Optimal with
Task Batch 20 and Nearest Strategy on Small Map

#CT 5 10 15 20
Computation Time ( 1?"?;;)) ( 2%';?%) (425129;) ) 48.56
Total Cost (12?3%) (1?;?;23%)) (131)1)?;"%) 288.0
Traffic Density (1()25.151%) (1(?5.151%) (1(?:%(.)57%) 200

time (i.e., it only takes about 11% computation time to
reach near 80% optimization objective and 94.8% traffic
balance performance). Moreover, the listed total costs reveal
a slightly decreasing optimality if treating the mathematical
function as the evaluation metric. This demonstrates that
only carefully assigning a small portion (5 out of 20) of
tasks can achieve remarkable performance in a large-scale
environment. The maintained traffic density highlights our
advantage in preserving base model characteristics.

Fig. 1: Experiment System.

D. Real Experiments

To validate the proposed method’s effectiveness, we con-
ducted physical experiments using four robots positioned
by four overhead cameras at different angles, as shown in
Fig. 1. The experimental environment was divided into 12
zones, with each zone’s movable area discretized into a
connected grid of four cells. Each grid cell has a size of
0.3m x 0.3m, while the size of the robots is 0.2m x 0.2m.
To ensure safety, we imposed a constraint that each grid



cell could only be occupied by a single robot at any given
time step, preventing collisions. In the experiments, four
tasks were simultaneously assigned, two designated primary
tasks while the remaining tasks were randomly allocated to
the robots. The trajectory of our robots (Fig. 2) illustrates
their coordinated movement without collisions, confirming
SMTP’s feasibility and practical applicability.
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Fig. 2: Real robot trajectories recorded by top-view cameras.
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VI. CONCLUSION

The proposed SMTP algorithm employs a two-pronged ap-
proach: it selectively assigns tasks within a critical task sub-
set while randomly allocating the remaining tasks, thereby
optimizing overall resource utilization. Extensive experi-
ments have demonstrated its superior performance in reduc-
ing the computational requirements of the allocation system
and preserving the fundamental characteristics of the base
model. Furthermore, the identification of a pivotal task subset
facilitates seamless integration into various contexts, endow-
ing it with adaptability as a versatile module in any assign-
ment framework. By incorporating the selection strategy with
additional models, further enhancements would be achieved,
leading to practical implementation and advancements in
MRSs. Prospective researchers can explore alternative task
elimination algorithms based on our formulations or inves-
tigate methodologies for determining the size of the critical
subset in complex and dynamic environments.

In the future, we plan to extend our SMTP approach to
heterogeneous problems.
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